首页> 外文OA文献 >Localization of JPEG Double Compression Through Multi-domain Convolutional Neural Networks
【2h】

Localization of JPEG Double Compression Through Multi-domain Convolutional Neural Networks

机译:通过多域卷积神经网络对JPEG双重压缩进行本地化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When an attacker wants to falsify an image, in most of cases she/he will perform a JPEG recompression. Different techniques have been developed based on diverse theoretical assumptions but very effective solutions have not been developed yet. Recently, machine learning based approaches have been started to appear in the field of image forensics to solve diverse tasks such as acquisition source identification and forgery detection. In this last case, the aim ahead would be to get a trained neural network able, given a to-be-checked image, to reliably localize the forged areas. With this in mind, our paper proposes a step forward in this direction by analyzing how a single or double JPEG compression can be revealed and localized using convolutional neural networks (CNNs). Different kinds of input to the CNN have been taken into consideration, and various experiments have been carried out trying also to evidence potential issues to be further investigated.
机译:当攻击者想要伪造图像时,在大多数情况下,他/他将执行JPEG重新压缩。基于不同的理论假设已经开发了不同的技术,但是尚未开发出非常有效的解决方案。最近,基于机器学习的方法已开始出现在图像取证领域,以解决各种任务,例如采集源识别和伪造检测。在这最后一种情况下,未来的目标是获得训练有素的神经网络,该网络能够在给定待检查图像的情况下可靠地定位伪造区域。考虑到这一点,我们的论文通过分析如何使用卷积神经网络(CNN)揭示和定位单个或双重JPEG压缩,提出了朝这个方向迈出的一步。已考虑到CNN的各种输入,并且已经进行了各种实验以试图证明潜在的问题有待进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号